Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion

التفاصيل البيبلوغرافية
العنوان: Machine learning-aided piece-wise modeling technique of power amplifier for digital predistortion
المؤلفون: S. S. Krishna Chaitanya Bulusu, Nuutti Tervo, Praneeth Susarla, Mikko J. Sillanpää, Olli Silvén, Markku Juntti, Aarno Pärssinen
بيانات النشر: Institute of Electrical and Electronics Engineers, 2023.
سنة النشر: 2023
مصطلحات موضوعية: computational complexity, behavioral modeling, machine learning (ML), digital predistortion (DPD), decision tree, power amplifier (PA), linearization
الوصف: We propose a new power amplifier (PA) behavioral modeling approach, to characterize and compensate for the signal quality degrading effects induced by a PA with a machine learning (ML) aided piece-wise (PW) modeling approach. Instead of using a single pruned Volterra model, we use multiple small-size pruned Volterra models by classifying the input data into different classes. For that purpose, an ML classifier model is trained by extracting some crucial features from both the input signal statistics and the PA operating point. The simulation results indicate that our approach contributes to an improved performance/complexity trade-off than a single generalized memory polynomial (GMP) model in terms of PA behavior modeling and linearization.
وصف الملف: application/pdf
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::54f7353de99050593e2429553bf72287
http://urn.fi/urn:nbn:fi-fe2023070690326
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....54f7353de99050593e2429553bf72287
قاعدة البيانات: OpenAIRE