Computational Performances of Natural Element and Finite Element Methods
العنوان: | Computational Performances of Natural Element and Finite Element Methods |
---|---|
المؤلفون: | Diego Pereira Botelho, Brahim Ramdane, Yves Maréchal |
المساهمون: | Laboratoire de Génie Electrique de Grenoble (G2ELab), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Garcia, Sylvie |
المصدر: | Compumag 2013 Compumag 2013, Jun 2013, Budapest, Hungary IEEE Transactions on Magnetics IEEE Transactions on Magnetics, Institute of Electrical and Electronics Engineers, 2014, 50 (2) |
بيانات النشر: | Institute of Electrical and Electronics Engineers (IEEE), 2014. |
سنة النشر: | 2014 |
مصطلحات موضوعية: | Computer science, Spectral element method, hp-FEM, computer.software_genre, Regular grid, Discontinuous Galerkin method, Meshfree methods, Smoothed finite element method, Applied mathematics, Electrical and Electronic Engineering, ComputingMilieux_MISCELLANEOUS, Extended finite element method, Numerical linear algebra, Finite volume method, Functional analysis, Finite element limit analysis, Numerical analysis, [SPI.NRJ]Engineering Sciences [physics]/Electric power, Finite difference method, Finite difference coefficient, Mixed finite element method, Boundary knot method, Computational geometry, Finite element method, Electronic, Optical and Magnetic Materials, Mesh generation, Superelement, Voronoi diagram, computer, [SPI.NRJ] Engineering Sciences [physics]/Electric power |
الوصف: | This paper compares the numerical performance of two numerical methods, the finite element method and the natural element method (NEM). NEM is relatively recent and is based on functions belonging to the Voronoi cell family. Although it has been proved that this method gives smoother and more accurate solutions than the finite elements, its computational cost is also known to be higher. In this paper, we compare computational efficiency, i.e., accuracy for a given cost, of finite elements and natural elements, for both Laplace and Sibson shape functions. We also bring into the comparison a Voronoi cell-based finite difference scheme which proves to be very efficient. The error is calculated using dual formulations or analytical solutions. |
تدمد: | 1941-0069 0018-9464 |
DOI: | 10.1109/tmag.2013.2285259 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b211f0fbbebbb2652ca4e93f68ede12 https://doi.org/10.1109/tmag.2013.2285259 |
Rights: | CLOSED |
رقم الانضمام: | edsair.doi.dedup.....4b211f0fbbebbb2652ca4e93f68ede12 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 19410069 00189464 |
---|---|
DOI: | 10.1109/tmag.2013.2285259 |