Extension operators for smooth functions on compact subsets of the reals

التفاصيل البيبلوغرافية
العنوان: Extension operators for smooth functions on compact subsets of the reals
المؤلفون: Enrique Jorda Mora, Jochen Wengenroth, Leonhard Frerick
المصدر: RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
instname
بيانات النشر: Springer-Verlag, 2020.
سنة النشر: 2020
مصطلحات موضوعية: 47A57, 46E25, 46A63, General Mathematics, Extension operator, Mathematics::Rings and Algebras, 010102 general mathematics, Extension (predicate logic), 01 natural sciences, Functional Analysis (math.FA), Mathematics - Functional Analysis, Algebra, 0103 physical sciences, FOS: Mathematics, Spaces of smooth functions, 010307 mathematical physics, 0101 mathematics, MATEMATICA APLICADA, Mathematics
الوصف: We introduce sufficient as well as necessary conditions for a compact set $K$ such that there is a continuous linear extension operator from the space of restrictions $C^\infty(K)=\lbrace F|_K: F\in C^\infty(\mathbb R)\rbrace$ to $C^\infty(\mathbb R)$. This allows us to deal with examples of the form $K=\lbrace a_n:n\in\mathbb N\rbrace \cup \lbrace 0\rbrace$ for $a_n\to 0$ previously considered by Fefferman and Ricci as well as Vogt.
18 pages
وصف الملف: application/pdf
اللغة: English
DOI: 10.1007/s00209-019-02388-5
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3d83fb13aae89dbdfbd35f94d09aecdf
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....3d83fb13aae89dbdfbd35f94d09aecdf
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1007/s00209-019-02388-5