Prediction of prostate cancer aggressiveness using 18F-Fluciclovine (FACBC) PET and multisequence multiparametric MRI

التفاصيل البيبلوغرافية
العنوان: Prediction of prostate cancer aggressiveness using 18F-Fluciclovine (FACBC) PET and multisequence multiparametric MRI
المؤلفون: Ivan Jambor, Parisa Movahedi, Ileana Montoya Perez, Olli Eskola, Anna Kuisma, M. Pesola, Tapio Pahikkala, Heikki Minn, Hannu J. Aronen, Pekka Taimen, Peter J. Boström, Jukka Kemppainen, Otto Ettala, Esa Kähkönen, Timo Liimatainen, Harri Merisaari, Jarmo Teuho, Jani Saunavaara
المصدر: Scientific Reports, Vol 10, Iss 1, Pp 1-11 (2020)
بيانات النشر: Nature Publishing Group, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Multidisciplinary, Prostatectomy, business.industry, medicine.medical_treatment, lcsh:R, Univariate, Multiparametric MRI, lcsh:Medicine, Feature selection, Logistic regression, Cross-validation, 030218 nuclear medicine & medical imaging, 03 medical and health sciences, 0302 clinical medicine, Feature (computer vision), 030220 oncology & carcinogenesis, medicine, Kurtosis, lcsh:Q, Nuclear medicine, business, lcsh:Science, Mathematics
الوصف: The aim of this prospective single-institution clinical trial (NCT02002455) was to evaluate the potential of advanced post-processing methods for 18F-Fluciclovine PET and multisequence multiparametric MRI in the prediction of prostate cancer (PCa) aggressiveness, defined by Gleason Grade Group (GGG). 21 patients with PCa underwent PET/CT, PET/MRI and MRI before prostatectomy. DWI was post-processed using kurtosis (ADCk, K), mono- (ADCm), and biexponential functions (f, Dp, Df) while Logan plots were used to calculate volume of distribution (VT). In total, 16 unique PET (VT, SUV) and MRI derived quantitative parameters were evaluated. Univariate and multivariate analysis were carried out to estimate the potential of the quantitative parameters and their combinations to predict GGG 1 vs >1, using logistic regression with a nested leave-pair out cross validation (LPOCV) scheme and recursive feature elimination technique applied for feature selection. The second order rotating frame imaging (RAFF), monoexponential and kurtosis derived parameters had LPOCV AUC in the range of 0.72 to 0.92 while the corresponding value for VT was 0.85. The best performance for GGG prediction was achieved by K parameter of kurtosis function followed by quantitative parameters based on DWI, RAFF and 18F-FACBC PET. No major improvement was achieved using parameter combinations with or without feature selection. Addition of 18F-FACBC PET derived parameters (VT, SUV) to DWI and RAFF derived parameters did not improve LPOCV AUC.
اللغة: English
تدمد: 2045-2322
DOI: 10.1038/s41598-020-66255-8
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3a8b171889f9a194563755619f912108
http://link.springer.com/article/10.1038/s41598-020-66255-8
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....3a8b171889f9a194563755619f912108
قاعدة البيانات: OpenAIRE
الوصف
تدمد:20452322
DOI:10.1038/s41598-020-66255-8