Semigroup approach to birth-and-death stochastic dynamics in continuum

التفاصيل البيبلوغرافية
العنوان: Semigroup approach to birth-and-death stochastic dynamics in continuum
المؤلفون: Yuri Kondratiev, Dmitri Finkelshtein, Oleksandr Kutoviy
بيانات النشر: arXiv, 2011.
سنة النشر: 2011
مصطلحات موضوعية: Pure mathematics, Correlation functions, 46E30, 47D06, 82C21, 35Q83, Banach space, Evolution equations, FOS: Physical sciences, Spatial birth-and-death dynamics, Vlasov scaling, Dynamical Systems (math.DS), C0-semigroups, C(0)-semigroups, birth-and-death dynamics, Continuous systems, Vlasov equation, Convergence (routing), FOS: Mathematics, Spatial, Quantitative Biology::Populations and Evolution, Mathematics - Dynamical Systems, Scaling, Mathematical Physics, Mathematics, Markov chain, Semigroup, Continuum (topology), Scaling limits, Markov evolution, Mathematical Physics (math-ph), Birth–death process, Functional Analysis (math.FA), Mathematics - Functional Analysis, Analysis, Generator (mathematics)
الوصف: We describe a general approach to the construction of a state evolution corresponding to the Markov generator of a spatial birth-and-death dynamics in $\mathbb{R}^d$. We present conditions on the birth-and-death intensities which are sufficient for the existence of an evolution as a strongly continuous semigroup in a proper Banach space of correlation functions satisfying the Ruelle bound. The convergence of a Vlasov-type scaling for the corresponding stochastic dynamics is considered.
Comment: 35 pages
DOI: 10.48550/arxiv.1109.5094
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2eb8c6d0a79565bf0527e2cd6d8a7360
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....2eb8c6d0a79565bf0527e2cd6d8a7360
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.1109.5094