Bounds on optimal transport maps onto log-concave measures

التفاصيل البيبلوغرافية
العنوان: Bounds on optimal transport maps onto log-concave measures
المؤلفون: Max Fathi, Maria Colombo
المساهمون: Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute for Advanced Study [Princeton] (IAS), Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0030,EFI,Entropie, flots, inégalités(2017), ANR-18-CE40-0006,MESA,Méthode de Stein et Analyse(2018), ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011)
المصدر: Journal of Differential Equations
Journal of Differential Equations, 2021, 271, pp.1007-1022. ⟨10.1016/j.jde.2020.09.032⟩
بيانات النشر: arXiv, 2019.
سنة النشر: 2019
مصطلحات موضوعية: media_common.quotation_subject, Gaussian, [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 01 natural sciences, Measure (mathematics), symbols.namesake, Mathematics - Analysis of PDEs, [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph], FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], 0101 mathematics, Eigenvalues and eigenvectors, Mathematics, media_common, Applied Mathematics, 010102 general mathematics, Mathematical analysis, Degenerate energy levels, Infinity, Lipschitz continuity, 010101 applied mathematics, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], Jacobian matrix and determinant, symbols, Analysis, Analysis of PDEs (math.AP)
الوصف: We consider strictly log-concave measures, whose bounds degenerate at infinity. We prove that the optimal transport map from the Gaussian onto such a measure is locally Lipschitz, and that the eigenvalues of its Jacobian have controlled growth at infinity.
تدمد: 0022-0396
1090-2732
DOI: 10.48550/arxiv.1910.09035
DOI: 10.1016/j.jde.2020.09.032⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a706ffefbfac79155f965baf4e0ba69
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....1a706ffefbfac79155f965baf4e0ba69
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00220396
10902732
DOI:10.48550/arxiv.1910.09035