Bounds on optimal transport maps onto log-concave measures
العنوان: | Bounds on optimal transport maps onto log-concave measures |
---|---|
المؤلفون: | Max Fathi, Maria Colombo |
المساهمون: | Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute for Advanced Study [Princeton] (IAS), Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE40-0030,EFI,Entropie, flots, inégalités(2017), ANR-18-CE40-0006,MESA,Méthode de Stein et Analyse(2018), ANR-11-LABX-0040,CIMI,Centre International de Mathématiques et d'Informatique (de Toulouse)(2011) |
المصدر: | Journal of Differential Equations Journal of Differential Equations, 2021, 271, pp.1007-1022. ⟨10.1016/j.jde.2020.09.032⟩ |
بيانات النشر: | arXiv, 2019. |
سنة النشر: | 2019 |
مصطلحات موضوعية: | media_common.quotation_subject, Gaussian, [MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA], 01 natural sciences, Measure (mathematics), symbols.namesake, Mathematics - Analysis of PDEs, [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph], FOS: Mathematics, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP], 0101 mathematics, Eigenvalues and eigenvectors, Mathematics, media_common, Applied Mathematics, 010102 general mathematics, Mathematical analysis, Degenerate energy levels, Infinity, Lipschitz continuity, 010101 applied mathematics, [MATH.MATH-PR]Mathematics [math]/Probability [math.PR], Jacobian matrix and determinant, symbols, Analysis, Analysis of PDEs (math.AP) |
الوصف: | We consider strictly log-concave measures, whose bounds degenerate at infinity. We prove that the optimal transport map from the Gaussian onto such a measure is locally Lipschitz, and that the eigenvalues of its Jacobian have controlled growth at infinity. |
تدمد: | 0022-0396 1090-2732 |
DOI: | 10.48550/arxiv.1910.09035 |
DOI: | 10.1016/j.jde.2020.09.032⟩ |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1a706ffefbfac79155f965baf4e0ba69 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....1a706ffefbfac79155f965baf4e0ba69 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 00220396 10902732 |
---|---|
DOI: | 10.48550/arxiv.1910.09035 |