Nearby Lagrangian fibers and Whitney sphere links

التفاصيل البيبلوغرافية
العنوان: Nearby Lagrangian fibers and Whitney sphere links
المؤلفون: Ivan Smith, Tobias Ekholm
المساهمون: Apollo - University of Cambridge Repository
المصدر: Compositio Mathematica. 154:685-718
بيانات النشر: Wiley, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Pure mathematics, Lagrangian link, Disjoint sets, 01 natural sciences, moduli space of holomorphic disks, Floer equation, Projection (mathematics), 0103 physical sciences, FOS: Mathematics, 0101 mathematics, Mathematics::Symplectic Geometry, stable homotopy groups of spheres, Mathematics, Algebra and Number Theory, Fiber (mathematics), symplectic field theory, 010102 general mathematics, Submanifold, 53D35, Pontrjagin-Thom construction, Compact space, Mathematics - Symplectic Geometry, Whitney sphere, Symplectic Geometry (math.SG), Embedding, Cotangent bundle, 010307 mathematical physics, Symplectic geometry
الوصف: Let n>3, and let L be a Lagrangian embedding of an n-disk into the cotangent bundle of n-dimensional Euclidean space that agrees with the cotangent fiber over a non-zero point x outside a compact set. Assume that L is disjoint from the cotangent fiber at the origin. The projection of L to the base extends to a map of the n-sphere into the complement of the origin in Euclidean n-space . We show that this map is homotopically trivial, answering a question of Y. Eliashberg. We give a number of generalizations of this result, including homotopical constraints on embedded Lagrangian disks in the complement of another Lagrangian submanifold, and on two-component links of immersed Lagrangian spheres with one double point in 2n-dimensional space, under suitable dimension and Maslov index hypotheses. The proofs combine techniques from the authors' previous work, constructing bounding manifolds from moduli spaces of Floer-holomorphic disks, with symplectic field theory.
v2: 39 pages, 2 figures. Numerous minor corrections and clarifications to take account of referees' suggestions. This version to appear in Compositio
وصف الملف: application/pdf
تدمد: 1570-5846
0010-437X
DOI: 10.1112/s0010437x17007692
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::147d90f85bf58d8e615ccbe7e4ee211b
https://doi.org/10.1112/s0010437x17007692
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....147d90f85bf58d8e615ccbe7e4ee211b
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15705846
0010437X
DOI:10.1112/s0010437x17007692