Bayesian causal inference: a critical review

التفاصيل البيبلوغرافية
العنوان: Bayesian causal inference: a critical review
المؤلفون: Fan Li, Peng Ding, Fabrizia Mealli
المصدر: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 381
بيانات النشر: The Royal Society, 2023.
سنة النشر: 2023
مصطلحات موضوعية: Methodology (stat.ME), FOS: Computer and information sciences, General Mathematics, General Engineering, General Physics and Astronomy, Applications (stat.AP), Statistics - Applications, Statistics - Methodology
الوصف: This paper provides a critical review of the Bayesian perspective of causal inference based on the potential outcomes framework. We review the causal estimands, assignment mechanism, the general structure of Bayesian inference of causal effects and sensitivity analysis. We highlight issues that are unique to Bayesian causal inference, including the role of the propensity score, the definition of identifiability, the choice of priors in both low- and high-dimensional regimes. We point out the central role of covariate overlap and more generally the design stage in Bayesian causal inference. We extend the discussion to two complex assignment mechanisms: instrumental variable and time-varying treatments. We identify the strengths and weaknesses of the Bayesian approach to causal inference. Throughout, we illustrate the key concepts via examples. This article is part of the theme issue ‘Bayesian inference: challenges, perspectives, and prospects’.
تدمد: 1471-2962
1364-503X
DOI: 10.1098/rsta.2022.0153
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1462bf6c6274bd2b6e647fb8ca88ac9d
https://doi.org/10.1098/rsta.2022.0153
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....1462bf6c6274bd2b6e647fb8ca88ac9d
قاعدة البيانات: OpenAIRE
الوصف
تدمد:14712962
1364503X
DOI:10.1098/rsta.2022.0153