التفاصيل البيبلوغرافية
العنوان: |
Quantum Mass Production Theorems |
المؤلفون: |
Kretschmer, William |
بيانات النشر: |
arXiv, 2022. |
سنة النشر: |
2022 |
مصطلحات موضوعية: |
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, quantum circuit synthesis, Computer Science - Data Structures and Algorithms, quantum circuit complexity, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Quantum Physics (quant-ph), Theory of computation → Quantum complexity theory, mass production, Theory of computation → Circuit complexity |
الوصف: |
We prove that for any $n$-qubit unitary transformation $U$ and for any $r = 2^{o(n / \log n)}$, there exists a quantum circuit to implement $U^{\otimes r}$ with at most $O(4^n)$ gates. This asymptotically equals the number of gates needed to implement just a single copy of a worst-case $U$. We also establish analogous results for quantum states and diagonal unitary transformations. Our techniques are based on the work of Uhlig [Math. Notes 1974], who proved a similar mass production theorem for Boolean functions. Comment: 12 pages, 2 figures. V2: writing improvements |
DOI: |
10.48550/arxiv.2212.14399 |
URL الوصول: |
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::127fa03132069fa5dd67183f75c1d9df |
Rights: |
OPEN |
رقم الانضمام: |
edsair.doi.dedup.....127fa03132069fa5dd67183f75c1d9df |
قاعدة البيانات: |
OpenAIRE |