Quantum Mass Production Theorems

التفاصيل البيبلوغرافية
العنوان: Quantum Mass Production Theorems
المؤلفون: Kretschmer, William
بيانات النشر: arXiv, 2022.
سنة النشر: 2022
مصطلحات موضوعية: FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, quantum circuit synthesis, Computer Science - Data Structures and Algorithms, quantum circuit complexity, FOS: Physical sciences, Data Structures and Algorithms (cs.DS), Computational Complexity (cs.CC), Quantum Physics (quant-ph), Theory of computation → Quantum complexity theory, mass production, Theory of computation → Circuit complexity
الوصف: We prove that for any $n$-qubit unitary transformation $U$ and for any $r = 2^{o(n / \log n)}$, there exists a quantum circuit to implement $U^{\otimes r}$ with at most $O(4^n)$ gates. This asymptotically equals the number of gates needed to implement just a single copy of a worst-case $U$. We also establish analogous results for quantum states and diagonal unitary transformations. Our techniques are based on the work of Uhlig [Math. Notes 1974], who proved a similar mass production theorem for Boolean functions.
Comment: 12 pages, 2 figures. V2: writing improvements
DOI: 10.48550/arxiv.2212.14399
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::127fa03132069fa5dd67183f75c1d9df
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....127fa03132069fa5dd67183f75c1d9df
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.48550/arxiv.2212.14399