Architecture and Connectivity Govern Actin Network Contractility

التفاصيل البيبلوغرافية
العنوان: Architecture and Connectivity Govern Actin Network Contractility
المؤلفون: Manuel Théry, Jean-Louis Martiel, François Nédélec, Wenxiang Cao, Christophe Guérin, Enrique M. De La Cruz, Hajer Ennomani, Gaëlle Letort, Laurent Blanchoin
المساهمون: Laboratoire de physiologie cellulaire végétale (LPCV), Université Joseph Fourier - Grenoble 1 (UJF)-Institut National de la Recherche Agronomique (INRA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Molecular Biophysics and Biochemistry, Yale University [New Haven], Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, European Molecular Biology Laboratory [Grenoble] (EMBL), Grants from the Human Frontier Science Program (RGP0004/2011)- NIH (GM097348)- Burroughs Wellcome Fund (BWF) 2014 Collaborative Research Travel Grant CRTG- Projet International de Cooperation Scientifique (PICS) award from CNRS, ANR-12-BSV5-0014,Contract,Nouveaux systèmes biomimétiques pour étudier la contractilité acto-myosine cellulaire(2012), European Project: European Research Council, Physiologie cellulaire et végétale (LPCV), Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
المصدر: Current Biology-CB
Current Biology-CB, Elsevier, 2016, 26 (5), pp.616-626
Current Biology-CB, 2016, 26 (5), pp.616-626. ⟨10.1016/j.cub.2015.12.069⟩
Current Biology-CB, Elsevier, 2016, 26 (5), pp.616-626. ⟨10.1016/j.cub.2015.12.069⟩
بيانات النشر: HAL CCSD, 2016.
سنة النشر: 2016
مصطلحات موضوعية: 0301 basic medicine, macromolecular substances, [SDV.BC]Life Sciences [q-bio]/Cellular Biology, Biology, Myosins, Microfilament, General Biochemistry, Genetics and Molecular Biology, Article, Contractility, 03 medical and health sciences, 0302 clinical medicine, Actin filament branching, Cell polarity, Myosin, Animals, Micropatterning, Actin filament dynamics, Actin network contractility, Cytoskeleton, Actin, ComputingMilieux_MISCELLANEOUS, Actomyosin contractility, Agricultural and Biological Sciences(all), Biochemistry, Genetics and Molecular Biology(all), Network architecture, Actin remodeling, Actomyosin, Actins, Cell biology, 030104 developmental biology, Rabbits, General Agricultural and Biological Sciences, 030217 neurology & neurosurgery, Muscle Contraction
الوصف: International audience; Actomyosin contractility plays a central role in a wide range of cellular processes, including the establishment of cell polarity, cell migration, tissue integrity, and morphogenesis during development. The contractile response is variable and depends on actomyosin network architecture and biochemical composition. To determine how this coupling regulates actomyosin-driven contraction, we used a micropatterning method that enables the spatial control of actin assembly. We generated a variety of actin templates and measured how defined actin structures respond to myosin-induced forces. We found that the same actin filament crosslinkers either enhance or inhibit the contractility of a network, depending on the organization of actin within the network. Numerical simulations unified the roles of actin filament branching and crosslinking during actomyosin contraction. Specifically, we introduce the concept of "network connectivity'' and show that the contractions of distinct actin architectures are described by the same master curve when considering their degree of connectivity. This makes it possible to predict the dynamic response of defined actin structures to transient changes in connectivity. We propose that, depending on the connectivity and the architecture, network contraction is dominated by either sarcomeric-like or buckling mechanisms. More generally, this study reveals how actin network contractility depends on its architecture under a defined set of biochemical conditions.
اللغة: English
تدمد: 0960-9822
1879-0445
DOI: 10.1016/j.cub.2015.12.069⟩
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0fda42746ef228f16bde74edeb3460e0
https://hal.archives-ouvertes.fr/hal-01281708
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....0fda42746ef228f16bde74edeb3460e0
قاعدة البيانات: OpenAIRE
الوصف
تدمد:09609822
18790445
DOI:10.1016/j.cub.2015.12.069⟩