Collapsibility of simplicial complexes of hypergraphs

التفاصيل البيبلوغرافية
العنوان: Collapsibility of simplicial complexes of hypergraphs
المؤلفون: Alan Lew
سنة النشر: 2018
مصطلحات موضوعية: Hypergraph, Mathematics::Combinatorics, Applied Mathematics, Covering number, Theoretical Computer Science, Combinatorics, Simplicial complex, Computational Theory and Mathematics, FOS: Mathematics, Discrete Mathematics and Combinatorics, Rank (graph theory), Mathematics - Combinatorics, Geometry and Topology, Combinatorics (math.CO), Mathematics
الوصف: Let $\mathcal{H}$ be an $r$-uniform hypergraph. We show that the simplicial complex whose simplices are the hypergraphs $\mathcal{F}\subset\mathcal{H}$ with covering number at most $p$ is $\left(\binom{r+p}{r}-1\right)$-collapsible. Similarly, the simplicial complex whose simplices are the pairwise intersecting hypergraphs $\mathcal{F}\subset\mathcal{H}$ is $\frac{1}{2}\binom{2r}{r}$-collapsible.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0dab8afe0193802e3793c1d5fc50ed46
http://arxiv.org/abs/1810.11802
Rights: OPEN
رقم الانضمام: edsair.doi.dedup.....0dab8afe0193802e3793c1d5fc50ed46
قاعدة البيانات: OpenAIRE