DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary Learning

التفاصيل البيبلوغرافية
العنوان: DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary Learning
المؤلفون: Changbo Wang, Yunzhe Wang, George Baciu, Chenhui Li, Junjie Chen
المصدر: IEEE Transactions on Visualization and Computer Graphics. 28:1062-1072
بيانات النشر: Institute of Electrical and Electronics Engineers (IEEE), 2022.
سنة النشر: 2022
مصطلحات موضوعية: Visual analytics, Distribution (number theory), Computer science, Kernel density estimation, Function (mathematics), computer.software_genre, Computer Graphics and Computer-Aided Design, Component (UML), Signal Processing, Visual query, Computer Vision and Pattern Recognition, Data mining, Dictionary learning, computer, Computer Science::Databases, Software
الوصف: Visual query of spatiotemporal data is becoming an increasingly important function in visual analytics applications. Various works have been presented for querying large spatiotemporal data in real time. However, the real-time query of spatiotemporal data distribution is still an open challenge. As spatiotemporal data become larger, methods of aggregation, storage and querying become critical. We propose a new visual query system that creates a low-memory storage component and provides real-time visual interactions of spatiotemporal data. We first present a peak-based kernel density estimation method to produce the data distribution for the spatiotemporal data. Then a novel density dictionary learning approach is proposed to compress temporal density maps and accelerate the query calculation. Moreover, various intuitive query interactions are presented to interactively gain patterns. The experimental results obtained on three datasets demonstrate that the presented system offers an effective query for visual analytics of spatiotemporal data.
تدمد: 2160-9306
1077-2626
DOI: 10.1109/tvcg.2021.3114762
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0ca501fe68235a09fcbe40fc312edbe4
https://doi.org/10.1109/tvcg.2021.3114762
Rights: CLOSED
رقم الانضمام: edsair.doi.dedup.....0ca501fe68235a09fcbe40fc312edbe4
قاعدة البيانات: OpenAIRE
الوصف
تدمد:21609306
10772626
DOI:10.1109/tvcg.2021.3114762