The Potential of Smartlnb Networks for Rainfall Estimation

التفاصيل البيبلوغرافية
العنوان: The Potential of Smartlnb Networks for Rainfall Estimation
المؤلفون: Antonio Petrolino, Samantha Melani, Alberto Ortolani, Giacomo Bacci, Elisa Adirosi, Luca Facheris, Luca Baldini, Filippo Giannetti, Ruggero Reggiannini, Marco Moretti
المصدر: 2018 IEEE Workshop on Statistical Signal Processing (SSP), pp. 120–124, Freiburg im Breisgau, Germany, Germany, 10-13/10/2018
info:cnr-pdr/source/autori:F. Giannetti and M. Moretti and R. Reggiannini and A. Petrolino and G. Bacci and E. Adirosi and L. Baldini and L. Facheris and S. Melani and A. Ortolani/congresso_nome:2018 IEEE Workshop on Statistical Signal Processing (SSP)/congresso_luogo:Freiburg im Breisgau, Germany, Germany/congresso_data:10-13%2F10%2F2018/anno:2018/pagina_da:120/pagina_a:124/intervallo_pagine:120–124
SSP
بيانات النشر: IEEE, New York, USA, 2018.
سنة النشر: 2018
مصطلحات موضوعية: 020301 aerospace & aeronautics, Signal processing, Nowcasting, Kalman filter, nowcasting, Rain attenuation in satellite links, rain fields evaluation, Signal Processing, Instrumentation, Computer Networks and Communications, 020209 energy, Attenuation, Rain, 02 engineering and technology, Signal, Amplitude, 0203 mechanical engineering, 0202 electrical engineering, electronic engineering, information engineering, Satellite, Mathematics, Communication channel, Remote sensing, Satellites, Fluctuations, Extraterrestrial measurements, Kalman filters, Orbits
الوصف: NEFOCAST is a research project that aims at retrieving rainfall fields from channel attenuation measurements on satellite links. Rainfall estimation algorithms rely on the deviation of the measured E s /N 0 from the clear-sky conditions. Unfortunately, clear-sky measurements exhibit signal fluctuations (due to a variety of causes) which could generate false rain detections and reduce estimation accuracy. In this paper we first review the main causes of random amplitude fluctuations in the received E s /N 0 , and then we present an adaptive tracking algorithm based on two Kalman filters: one that tracks slow changes in E s /N 0 due to external causes and another which tracks fast E s /N 0 variations due to rain. A comparison of the outputs of the two filters confirms the reliability of the rainfall rate estimate.
اللغة: English
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0c1b6b0fcfc31484745d8eff9b977b44
https://publications.cnr.it/doc/391492
رقم الانضمام: edsair.doi.dedup.....0c1b6b0fcfc31484745d8eff9b977b44
قاعدة البيانات: OpenAIRE