Higher order duality and toric embeddings
العنوان: | Higher order duality and toric embeddings |
---|---|
المؤلفون: | Sandra Di Rocco, Ragni Piene, Alicia Dickenstein |
المصدر: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
بيانات النشر: | arXiv, 2011. |
سنة النشر: | 2011 |
مصطلحات موضوعية: | Pure mathematics, Generalization, Matemáticas, Duality (mathematics), Matemática Pura, purl.org/becyt/ford/1 [https], Mathematics - Algebraic Geometry, Mathematics::Algebraic Geometry, Degree, FOS: Mathematics, Mathematics - Combinatorics, Higher dual variety, Algebraic Geometry (math.AG), Projective variety, Mathematics, Algebra and Number Theory, Toric variety, purl.org/becyt/ford/1.1 [https], Order (ring theory), Dual (category theory), Tropicalization, Embedding, Geometry and Topology, Combinatorics (math.CO), Variety (universal algebra), CIENCIAS NATURALES Y EXACTAS |
الوصف: | The notion of higher order dual varieties of a projective variety is a natural generalization of the classical notion of projective duality, introduced by Piene in 1983. In this paper we study higher order dual varieties of projective toric embeddings. We compute the degree of the second dual variety of a smooth toric threefold in geometric and combinatorial terms, and we classify smooth 2-jet spanned projective embeddings of smooth threefolds whose second dual variety has dimension less than expected. We also describe the tropicalization of the k-th dual variety of an equivariantly embedded (not necessarily normal) toric variety. Comment: Final version to appear in Annales de l'Institut Fourier. Deleted an unnecessary wrong statement |
وصف الملف: | application/pdf |
DOI: | 10.48550/arxiv.1111.4641 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_dedup___::045c59ab5089296c938b21c287213d8b |
Rights: | OPEN |
رقم الانضمام: | edsair.doi.dedup.....045c59ab5089296c938b21c287213d8b |
قاعدة البيانات: | OpenAIRE |
DOI: | 10.48550/arxiv.1111.4641 |
---|