Machine learning for scattering data: strategies, perspectives and applications to surface scattering

التفاصيل البيبلوغرافية
العنوان: Machine learning for scattering data: strategies, perspectives and applications to surface scattering
المؤلفون: Alexander Hinderhofer, Alessandro Greco, Vladimir Starostin, Valentin Munteanu, Linus Pithan, Alexander Gerlach, Frank Schreiber
المصدر: Journal of Applied Crystallography. 56:3-11
بيانات النشر: International Union of Crystallography (IUCr), 2023.
سنة النشر: 2023
مصطلحات موضوعية: General Biochemistry, Genetics and Molecular Biology
الوصف: Machine learning (ML) has received enormous attention in science and beyond. Discussed here are the status, opportunities, challenges and limitations of ML as applied to X-ray and neutron scattering techniques, with an emphasis on surface scattering. Typical strategies are outlined, as well as possible pitfalls. Applications to reflectometry and grazing-incidence scattering are critically discussed. Comment is also given on the availability of training and test data for ML applications, such as neural networks, and a large reflectivity data set is provided as reference data for the community.
تدمد: 1600-5767
DOI: 10.1107/s1600576722011566
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::f3ab2defd406701196a2e50d0160e1ed
https://doi.org/10.1107/s1600576722011566
Rights: OPEN
رقم الانضمام: edsair.doi...........f3ab2defd406701196a2e50d0160e1ed
قاعدة البيانات: OpenAIRE
الوصف
تدمد:16005767
DOI:10.1107/s1600576722011566