Travel time prediction in transport and logistics

التفاصيل البيبلوغرافية
العنوان: Travel time prediction in transport and logistics
المؤلفون: Christian Wagner, Xia Li, Peer-Olaf Siebers, Ruibin Bai
المصدر: VINE Journal of Information and Knowledge Management Systems. 49:277-306
بيانات النشر: Emerald, 2019.
سنة النشر: 2019
مصطلحات موضوعية: 050210 logistics & transportation, Computer Networks and Communications, Computer science, Feature vector, 05 social sciences, Decision tree, 02 engineering and technology, Library and Information Sciences, Traffic flow, computer.software_genre, Ensemble learning, Computer Science Applications, Random forest, Tree (data structure), Empirical research, Management of Technology and Innovation, 0502 economics and business, 0202 electrical engineering, electronic engineering, information engineering, 020201 artificial intelligence & image processing, Data mining, Gradient boosting, computer, Information Systems
الوصف: Purpose Many transport and logistics companies nowadays use raw vehicle GPS data for travel time prediction. However, they face difficult challenges in terms of the costs of information storage, as well as the quality of the prediction. This paper aims to systematically investigate various meta-data (features) that require significantly less storage space but provide sufficient information for high-quality travel time predictions. Design/methodology/approach The paper systematically studied the combinatorial effects of features and different model fitting strategies with two popular decision tree ensemble methods for travel time prediction, namely, random forests and gradient boosting regression trees. First, the investigation was conducted using pseudo travel time data that were generated using a pseudo travel time sampling algorithm, which allows generating travel time data using different noise processes so that the prediction performance under different travel conditions and noise characteristics can be studied systematically. The results and findings were then further compared and evaluated through a real-life case. Findings The paper provides empirical insights and guidelines about how raw GPS data can be reduced into a small-sized feature vector for the purposes of vehicle travel time prediction. It suggests that, add travel time observations from the previous departure time intervals are beneficial to the prediction, particularly when there is no other types of real-time information (e.g. traffic flow, speed) are available. It was also found that modular model fitting does not improve the quality of the prediction in all experimental settings used in this paper. Research limitations/implications The findings are primarily based on empirical studies on limited real-life data instances, and the results may lack generalisabilities. Therefore, the researchers are encouraged to test them further in more real-life data instances. Practical implications The paper includes implications and guidelines for the development of efficient GPS data storage and high-quality travel time prediction under different types of travel conditions. Originality/value This paper systematically studies the combinatorial feature effects for tree-ensemble-based travel time prediction approaches.
تدمد: 2059-5891
DOI: 10.1108/vjikms-11-2018-0102
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::f1bb27c5d1158eb807524b22a2e03785
https://doi.org/10.1108/vjikms-11-2018-0102
Rights: CLOSED
رقم الانضمام: edsair.doi...........f1bb27c5d1158eb807524b22a2e03785
قاعدة البيانات: OpenAIRE
الوصف
تدمد:20595891
DOI:10.1108/vjikms-11-2018-0102