FORECASTING THE COVID-19 USING THE DISCRETE GENERALIZED LOGISTIC MODEL

التفاصيل البيبلوغرافية
العنوان: FORECASTING THE COVID-19 USING THE DISCRETE GENERALIZED LOGISTIC MODEL
المؤلفون: ANIS BEN DHAHBI, YASSINE CHARGUI, SALAH BOULAARAS, SEYFEDDINE RAHALI, ABADA MHAMDI
المصدر: Fractals. 30
بيانات النشر: World Scientific Pub Co Pte Ltd, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Applied Mathematics, Modeling and Simulation, Geometry and Topology
الوصف: Using mathematical models to describe the dynamics of infectious-diseases transmission in large communities can help epidemiological scientists to understand different factors affecting epidemics as well as health authorities to decide measures effective for infection prevention. In this study, we use a discrete version of the Generalized Logistic Model (GLM) to describe the spread of the coronavirus disease 2019 (COVID-19) pandemic in Saudi Arabia. We assume that we are operating in discrete time so that the model is represented by a first-order difference equation, unlike time-continuous models, which employ differential equations. Using this model, we forecast COVID-19 spread in Saudi Arabia and we show that the short-term predicted number of cumulative cases is in agreement with the confirmed reports.
تدمد: 1793-6543
0218-348X
DOI: 10.1142/s0218348x22402563
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::ef18cc218c57089daa3b68eaf8988da0
https://doi.org/10.1142/s0218348x22402563
رقم الانضمام: edsair.doi...........ef18cc218c57089daa3b68eaf8988da0
قاعدة البيانات: OpenAIRE
الوصف
تدمد:17936543
0218348X
DOI:10.1142/s0218348x22402563