Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation

التفاصيل البيبلوغرافية
العنوان: Energy-preserving exponential integrator Fourier pseudo-spectral schemes for the nonlinear Dirac equation
المؤلفون: Jiyong Li
المصدر: Applied Numerical Mathematics. 172:1-26
بيانات النشر: Elsevier BV, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Numerical Analysis, Nonlinear Dirac equation, Applied Mathematics, Dirac (software), Exponential integrator, Computational Mathematics, Nonlinear system, symbols.namesake, Fourier transform, Norm (mathematics), Mathematical induction, symbols, Applied mathematics, Energy (signal processing), Mathematics
الوصف: In this paper, we propose two new exponential integrator Fourier pseudo-spectral schemes for nonlinear Dirac (NLD) equation. The proposed schemes are time symmetric, unconditionally stable and preserve the total energy in the discrete level. We give rigorously error analysis and establish error bounds in the general H m -norm for the numerical solutions of the new schemes applied to the NLD equation. In more details, the proposed schemes have the second-order temporal accuracy and spectral spatial accuracy, respectively, without any CFL-type condition constraint. The error analysis techniques include the energy method and the techniques of either the cut-off of the nonlinearity to bound the numerical approximate solutions or the mathematical induction. Extensive numerical results are reported to confirm our error bounds and theoretical analysis.
تدمد: 0168-9274
DOI: 10.1016/j.apnum.2021.09.006
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::ef09bb6ee5df8621d97625a273e584b9
https://doi.org/10.1016/j.apnum.2021.09.006
Rights: CLOSED
رقم الانضمام: edsair.doi...........ef09bb6ee5df8621d97625a273e584b9
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01689274
DOI:10.1016/j.apnum.2021.09.006