Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation

التفاصيل البيبلوغرافية
العنوان: Riemann–Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation
المؤلفون: Xue-Wei Yan
المصدر: Nonlinear Dynamics. 102:2811-2819
بيانات النشر: Springer Science and Business Media LLC, 2020.
سنة النشر: 2020
مصطلحات موضوعية: Physics, Applied Mathematics, Mechanical Engineering, Mathematical analysis, Aerospace Engineering, Ocean Engineering, symbols.namesake, Nonlinear system, Riemann hypothesis, Matrix (mathematics), Nonlinear Sciences::Exactly Solvable and Integrable Systems, Transformation (function), Transformation matrix, Control and Systems Engineering, Inverse scattering problem, symbols, Electrical and Electronic Engineering, Nonlinear Sciences::Pattern Formation and Solitons, Nonlinear Schrödinger equation, Schrödinger's cat
الوصف: In this work, we study the Kundu-nonlinear Schrodinger (Kundu-NLS) equation (so-called the extended NLS equation), which can describe the propagation of the waves in dispersive media. A Lax spectral problem is used to construct the Riemann–Hilbert problem, via a matrix transformation. Based on the inverse scattering transformation, the general solutions of the Kundu-NLS equation are calculated. In the reflection-less case, the special matrix Riemann–Hilbert problem is carefully proposed to derive the multi-soliton solutions. Finally, some novel dynamics behaviors of the nonlinear system are theoretically and graphically discussed.
تدمد: 1573-269X
0924-090X
DOI: 10.1007/s11071-020-06102-7
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::e980a13d22050fd2fcaa462aa57df5d4
https://doi.org/10.1007/s11071-020-06102-7
Rights: CLOSED
رقم الانضمام: edsair.doi...........e980a13d22050fd2fcaa462aa57df5d4
قاعدة البيانات: OpenAIRE
الوصف
تدمد:1573269X
0924090X
DOI:10.1007/s11071-020-06102-7