Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis

التفاصيل البيبلوغرافية
العنوان: Performance-Portable Graph Coarsening for Efficient Multilevel Graph Analysis
المؤلفون: Sivasankaran Rajamanickam, Kamesh Madduri, Erik G. Boman, Michael S. Gilbert, Seher Acer
المصدر: IPDPS
بيانات النشر: IEEE, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Vertex (graph theory), Power graph analysis, Computer science, Iterative method, Heuristic (computer science), Graph partition, Graphics processing unit, Graph (abstract data type), Parallel computing, Enhanced Data Rates for GSM Evolution, Computer Science::Operating Systems, ComputingMethodologies_COMPUTERGRAPHICS
الوصف: The multilevel heuristic is an effective strategy for speeding up graph analytics, and graph coarsening is an integral step of multilevel methods. We perform a comprehensive study of multilevel coarsening in this work. We primarily focus on the graphics processing unit (GPU) parallelization of the Heavy Edge Coarsening (HEC) method executed in an iterative setting. We present optimizations for the two phases of coarsening, a fine-to-coarse vertex mapping phase, and a coarse graph construction phase. We also express several other coarsening algorithms using the Kokkos framework and discuss their parallelization. We demonstrate the efficacy of parallelized HEC on an NVIDIA Turing GPU and a 32-core AMD Ryzen processor using multilevel spectral graph partitioning as the primary case study.
DOI: 10.1109/ipdps49936.2021.00030
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::dde00f86d877675280123147deb9a396
https://doi.org/10.1109/ipdps49936.2021.00030
Rights: CLOSED
رقم الانضمام: edsair.doi...........dde00f86d877675280123147deb9a396
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1109/ipdps49936.2021.00030