Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws

التفاصيل البيبلوغرافية
العنوان: Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws
المؤلفون: José Francisco Gómez-Aguilar, Abdon Atangana, J.E. Solís-Pérez
المصدر: Chaos, Solitons & Fractals. 114:175-185
بيانات النشر: Elsevier BV, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Fundamental theorem, General Mathematics, Applied Mathematics, Numerical analysis, Chaotic, Lagrange polynomial, General Physics and Astronomy, Statistical and Nonlinear Physics, Differential operator, 01 natural sciences, 010305 fluids & plasmas, Fractional calculus, Exponential function, symbols.namesake, 0103 physical sciences, symbols, Applied mathematics, 010301 acoustics, Interpolation, Mathematics
الوصف: Variable-order differential operators can be employed as a powerful tool to modeling nonlinear fractional differential equations and chaotical systems. In this paper, we propose a new generalize numerical schemes for simulating variable-order fractional differential operators with power-law, exponential-law and Mittag-Leffler kernel. The numerical schemes are based on the fundamental theorem of fractional calculus and the Lagrange polynomial interpolation. These schemes were applied to simulate the chaotic financial system and memcapacitor-based circuit chaotic oscillator. Numerical examples are presented to show the applicability and efficiency of this novel method.
تدمد: 0960-0779
DOI: 10.1016/j.chaos.2018.06.032
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::dcdcaf49c2ab187040858b5d95a836a9
https://doi.org/10.1016/j.chaos.2018.06.032
Rights: CLOSED
رقم الانضمام: edsair.doi...........dcdcaf49c2ab187040858b5d95a836a9
قاعدة البيانات: OpenAIRE
الوصف
تدمد:09600779
DOI:10.1016/j.chaos.2018.06.032