Intrinsic nilpotent approximation
العنوان: | Intrinsic nilpotent approximation |
---|---|
المؤلفون: | Charles Rockland |
المصدر: | Acta Applicandae Mathematicae. 8:213-270 |
بيانات النشر: | Springer Science and Business Media LLC, 1987. |
سنة النشر: | 1987 |
مصطلحات موضوعية: | Algebra, Nilpotent, Approximation theory, Applied Mathematics, Lie algebra, Structure (category theory), Lie group, Context (language use), Algebraic number, Differential (mathematics), Mathematics |
الوصف: | This report is a preliminary version of work on an intrinsic approximation process arising in the context of a non-isotropic perturbation theory for certain classes of linear differential and pseudodifferential operators P on a minifold M. A basic issue is that the structure of P itself determines the minimal information that the initial approximation must contain. This may vary from point to point, and requires corresponding approximate state spaces or phase spaces. This approximation process is most naturally viewed from a seemingly abstract algebraic context, namely the approximation of certain infinite dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras. |
تدمد: | 1572-9036 0167-8019 |
DOI: | 10.1007/bf00046716 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_________::d94c9ddcebc6a8709a3dd6fe039884c2 https://doi.org/10.1007/bf00046716 |
Rights: | OPEN |
رقم الانضمام: | edsair.doi...........d94c9ddcebc6a8709a3dd6fe039884c2 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 15729036 01678019 |
---|---|
DOI: | 10.1007/bf00046716 |