Intrinsic nilpotent approximation

التفاصيل البيبلوغرافية
العنوان: Intrinsic nilpotent approximation
المؤلفون: Charles Rockland
المصدر: Acta Applicandae Mathematicae. 8:213-270
بيانات النشر: Springer Science and Business Media LLC, 1987.
سنة النشر: 1987
مصطلحات موضوعية: Algebra, Nilpotent, Approximation theory, Applied Mathematics, Lie algebra, Structure (category theory), Lie group, Context (language use), Algebraic number, Differential (mathematics), Mathematics
الوصف: This report is a preliminary version of work on an intrinsic approximation process arising in the context of a non-isotropic perturbation theory for certain classes of linear differential and pseudodifferential operators P on a minifold M. A basic issue is that the structure of P itself determines the minimal information that the initial approximation must contain. This may vary from point to point, and requires corresponding approximate state spaces or phase spaces. This approximation process is most naturally viewed from a seemingly abstract algebraic context, namely the approximation of certain infinite dimensional filtered Lie algebras L by (finite-dimensional) graded nilpotent Lie algebras.
تدمد: 1572-9036
0167-8019
DOI: 10.1007/bf00046716
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::d94c9ddcebc6a8709a3dd6fe039884c2
https://doi.org/10.1007/bf00046716
Rights: OPEN
رقم الانضمام: edsair.doi...........d94c9ddcebc6a8709a3dd6fe039884c2
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15729036
01678019
DOI:10.1007/bf00046716