ID: 3520519 LOGISTIC REGRESSION AND MACHINE LEARNING METHODS PREDICT CHOLEDOCHOLITHIASIS MORE ACCURATELY COMPARED TO CURRENT CRITERIA

التفاصيل البيبلوغرافية
العنوان: ID: 3520519 LOGISTIC REGRESSION AND MACHINE LEARNING METHODS PREDICT CHOLEDOCHOLITHIASIS MORE ACCURATELY COMPARED TO CURRENT CRITERIA
المؤلفون: Camellia Dalai, Harry Trieu, James H. Tabibian, Anand Rajan, John M. Azizian
المصدر: Gastrointestinal Endoscopy. 93:AB145-AB146
بيانات النشر: Elsevier BV, 2021.
سنة النشر: 2021
مصطلحات موضوعية: business.industry, Gastroenterology, Medicine, Radiology, Nuclear Medicine and imaging, Artificial intelligence, Current (fluid), business, Logistic regression, Machine learning, computer.software_genre, computer
تدمد: 0016-5107
DOI: 10.1016/j.gie.2021.03.972
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::d2c1444a172d349a5aa879cfa2d13426
https://doi.org/10.1016/j.gie.2021.03.972
Rights: CLOSED
رقم الانضمام: edsair.doi...........d2c1444a172d349a5aa879cfa2d13426
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00165107
DOI:10.1016/j.gie.2021.03.972