Infinitely many localized semiclassical states for critical nonlinear Dirac equations

التفاصيل البيبلوغرافية
العنوان: Infinitely many localized semiclassical states for critical nonlinear Dirac equations
المؤلفون: Shaowei Chen, Tianxiang Gou
المصدر: Nonlinearity. 34:6358-6397
بيانات النشر: IOP Publishing, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Nonlinear Dirac equation, Applied Mathematics, Dirac (video compression format), General Physics and Astronomy, Semiclassical physics, Statistical and Nonlinear Physics, Sobolev space, Compact space, Nabla symbol, Critical exponent, Mathematical Physics, Energy (signal processing), Mathematics, Mathematical physics
الوصف: In this paper, we are concerned with semiclassical states to the nonlinear Dirac equation with Sobolev critical exponent − i ϵ α ⋅ ∇ u + a β u + V ( x ) u = | u | q − 2 u + | u | u in R 3 , where u : R 3 → C 4 , 2 < q < 3, ϵ > 0 is a small parameter, a > 0 is a constant, α = (α 1, α 2, α 3), α j and β are 4 × 4 Pauli-Dirac matrices. We construct an infinite sequence of semiclassical states with higher energies concentrating around the local minimum points of the potential V. The problem is strongly indefinite and the solutions correspond to critical points of the underlying energy functional at energy levels where compactness condition breaks down. The proof relies on truncation techniques, blow-up arguments together with a local type Pohozaev identity.
تدمد: 1361-6544
0951-7715
DOI: 10.1088/1361-6544/ac149f
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::be5e26ee4355dfb34c24491a5d793569
https://doi.org/10.1088/1361-6544/ac149f
Rights: CLOSED
رقم الانضمام: edsair.doi...........be5e26ee4355dfb34c24491a5d793569
قاعدة البيانات: OpenAIRE
الوصف
تدمد:13616544
09517715
DOI:10.1088/1361-6544/ac149f