Generative aptamer discovery using RaptGen

التفاصيل البيبلوغرافية
العنوان: Generative aptamer discovery using RaptGen
المؤلفون: Natsuki Iwano, Tatsuo Adachi, Kazuteru Aoki, Yoshikazu Nakamura, Michiaki Hamada
المصدر: Nature Computational Science. 2:378-386
بيانات النشر: Springer Science and Business Media LLC, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Computer Networks and Communications, Computer Science (miscellaneous), Computer Science Applications
الوصف: Nucleic acid aptamers are generated by an in vitro molecular evolution method known as systematic evolution of ligands by exponential enrichment (SELEX). Various candidates are limited by actual sequencing data from an experiment. Here we developed RaptGen, which is a variational autoencoder for in silico aptamer generation. RaptGen exploits a profile hidden Markov model decoder to represent motif sequences effectively. We showed that RaptGen embedded simulation sequence data into low-dimensional latent space on the basis of motif information. We also performed sequence embedding using two independent SELEX datasets. RaptGen successfully generated aptamers from the latent space even though they were not included in high-throughput sequencing. RaptGen could also generate a truncated aptamer with a short learning model. We demonstrated that RaptGen could be applied to activity-guided aptamer generation according to Bayesian optimization. We concluded that a generative method by RaptGen and latent representation are useful for aptamer discovery.
تدمد: 2662-8457
DOI: 10.1038/s43588-022-00249-6
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::bc6de09d1c60349fbcab17cf4e89c3c6
https://doi.org/10.1038/s43588-022-00249-6
Rights: OPEN
رقم الانضمام: edsair.doi...........bc6de09d1c60349fbcab17cf4e89c3c6
قاعدة البيانات: OpenAIRE
الوصف
تدمد:26628457
DOI:10.1038/s43588-022-00249-6