Path connectivity of idempotents on a Hilbert space

التفاصيل البيبلوغرافية
العنوان: Path connectivity of idempotents on a Hilbert space
المؤلفون: Yan-Ni Chen, Hai-Yan Zhang, Hong-Ke Du
المصدر: Proceedings of the American Mathematical Society. 136:3483-3492
بيانات النشر: American Mathematical Society (AMS), 2008.
سنة النشر: 2008
مصطلحات موضوعية: Path (topology), Discrete mathematics, Applied Mathematics, General Mathematics, Linear space, Orthographic projection, Hilbert space, law.invention, symbols.namesake, Invertible matrix, law, Bounded function, Idempotence, symbols, Connectivity, Mathematics
الوصف: Let P and Q be two idempotents on a Hilbert space. In 2005, J. Giol in [Segments of bounded linear idempotents on a Hilbert space, J. Funct. Anal. 229(2005) 405-423] had established that, if P + Q - I is invertible, then P and Q are homotopic with s(P,Q) < 2. In this paper, we have given a necessary and sufficient condition that s(P,Q) < 2, where s(P, Q) denotes the minimal number of segments required to connect not only from P to Q, but also from Q to P in the set of idempotents.
تدمد: 0002-9939
DOI: 10.1090/s0002-9939-08-09194-6
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::acf69dde1b64c9645d1867adde8eaa89
https://doi.org/10.1090/s0002-9939-08-09194-6
Rights: OPEN
رقم الانضمام: edsair.doi...........acf69dde1b64c9645d1867adde8eaa89
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00029939
DOI:10.1090/s0002-9939-08-09194-6