Stability in locally L0-convex modules and a conditional version of James' compactness theorem

التفاصيل البيبلوغرافية
العنوان: Stability in locally L0-convex modules and a conditional version of James' compactness theorem
المؤلفون: José Miguel Zapata, José Orihuela
المصدر: Journal of Mathematical Analysis and Applications. 452:1101-1127
بيانات النشر: Elsevier BV, 2017.
سنة النشر: 2017
مصطلحات موضوعية: Convex analysis, Discrete mathematics, Applied Mathematics, 010102 general mathematics, Proper convex function, Subderivative, Krein–Milman theorem, Choquet theory, 01 natural sciences, 010104 statistics & probability, Locally convex topological vector space, Danskin's theorem, 0101 mathematics, Absolutely convex set, Analysis, Mathematics
الوصف: Locally L 0 -convex modules were introduced in Filipovic et al. (2009) [10] as the analytic basis for the study of conditional risk measures. Later, the algebra of conditional sets was introduced in Drapeau et al. (2016) [8] . In this paper we study locally L 0 -convex modules, and find exactly which subclass of locally L 0 -convex modules can be identified with the class of locally convex vector spaces within the context of conditional set theory. Second, we provide a version of the classical James' theorem of characterization of weak compactness for conditional Banach spaces. Finally, we state a conditional version of the Fatou and Lebesgue properties for conditional convex risk measures and, as application of the developed theory, we establish a version of the so-called Jouini–Schachermayer–Touzi theorem for robust representation of conditional convex risk measures defined on a L ∞ -type module.
تدمد: 0022-247X
DOI: 10.1016/j.jmaa.2017.03.048
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::ac722e707805270b6eb01251b37966cc
https://doi.org/10.1016/j.jmaa.2017.03.048
Rights: OPEN
رقم الانضمام: edsair.doi...........ac722e707805270b6eb01251b37966cc
قاعدة البيانات: OpenAIRE
الوصف
تدمد:0022247X
DOI:10.1016/j.jmaa.2017.03.048