Nonparametric Bayesian supervised classification of functional data

التفاصيل البيبلوغرافية
العنوان: Nonparametric Bayesian supervised classification of functional data
المؤلفون: Asma Rabaoui, Hachem Kadri, Manuel Davy
المصدر: ICASSP
بيانات النشر: IEEE, 2012.
سنة النشر: 2012
مصطلحات موضوعية: Contextual image classification, Computer science, business.industry, Monte Carlo method, Bayesian probability, Nonparametric statistics, Functional data analysis, Pattern recognition, Markov chain Monte Carlo, Probability density function, Machine learning, computer.software_genre, Data modeling, Dirichlet process, Support vector machine, Naive Bayes classifier, symbols.namesake, ComputingMethodologies_PATTERNRECOGNITION, symbols, Artificial intelligence, business, computer, Gaussian process
الوصف: A nonparametric approach combining generative models and functional data analysis is presented in this paper for classifying functional data which arise naturally in a wide variety of signal processing applications, such as brain computer interfacing, speech recognition, or image classification. Based on a new and improved family of Bayesian classifiers, we extend hierarchical Bayesian classification methodology from vector to functional settings. We provide theoretical and practical motivations to our approach which relies on Dirichlet process mixtures and Gaussian processes. The performance is evaluated on phoneme recognition task, and compared to that of Functional Support Vector Machines (FSVMs).
DOI: 10.1109/icassp.2012.6288641
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::989b37aa5ab153d06ba556275993cf03
https://doi.org/10.1109/icassp.2012.6288641
Rights: OPEN
رقم الانضمام: edsair.doi...........989b37aa5ab153d06ba556275993cf03
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1109/icassp.2012.6288641