A Deep Learning Compiler for Vector Processor

التفاصيل البيبلوغرافية
العنوان: A Deep Learning Compiler for Vector Processor
المؤلفون: Jun Wu, Songyuan Zhao, Haoqi Ren, Zhifeng Zhang, Pingping Pan
المصدر: Communications and Networking ISBN: 9783030677190
ChinaCom
بيانات النشر: Springer International Publishing, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Intrinsic function, Computer science, business.industry, Deep learning, Process (computing), Parallel computing, computer.software_genre, Vector processor, Very long instruction word, Code generation, Compiler, Artificial intelligence, business, computer, Software architecture description
الوصف: The technical route of machine learning compiler generally refers to the application of automatic or semi-automatic code generation in the optimization process instead of hand-optimization. This paper presents a deep learning compiler (DLCS) for target vector processor based on LLVM framework, which lowers deep learning (DL) models to an intermediate representation (IR) of two levels. The high-level IR realizes target-independent optimizations including kernel fusion, data replacement and data simplification, while the low-level IR allows the compiler to perform target-dependent optimizations, such as Eight-Slots VLIW and special intrinsic function. The proposed compiler customizes the architecture description of target vector processor to achieve a high-quality automatic code generation. We evaluate the performance comparison between DLCS and hand-optimization when deploying ResNet-18 model and MobileNet model to the target vector processor. Experimental results show that DLCS offers Multi-slot parallel performance for target vector processor and achieves speedups ranging from 1.5× to 3.0× over existing frameworks backed by hand-optimized libraries.
ردمك: 978-3-030-67719-0
DOI: 10.1007/978-3-030-67720-6_46
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::95e7391b6f95e33bb14cc1950936fc15
https://doi.org/10.1007/978-3-030-67720-6_46
Rights: CLOSED
رقم الانضمام: edsair.doi...........95e7391b6f95e33bb14cc1950936fc15
قاعدة البيانات: OpenAIRE
الوصف
ردمك:9783030677190
DOI:10.1007/978-3-030-67720-6_46