Epileptic Seizure Detection Based on Complexity Feature of EEG

التفاصيل البيبلوغرافية
العنوان: Epileptic Seizure Detection Based on Complexity Feature of EEG
المؤلفون: Kawser Ahammed, Mosabber Uddin Ahmed
المصدر: Journal of Biomedical Analytics. 3:1-11
بيانات النشر: Biomedical Research Foundation, 2020.
سنة النشر: 2020
مصطلحات موضوعية: medicine.diagnostic_test, Computer science, business.industry, Common disease, Pattern recognition, Electroencephalography, body regions, Multiscale entropy, Support vector machine, Eeg data, Feature (computer vision), medicine, Artificial intelligence, Epileptic seizure, medicine.symptom, business, Statistical hypothesis testing
الوصف: Brain disorder characterized by seizure is a common disease among people in the world. Characterization of electroencephalogram (EEG) signals in terms of complexity can be used to identify neurological disorders. In this study, a non-linear epileptic seizure detection method based on multiscale entropy (MSE) has been employed to characterize the complexity of EEG signals. For this reason, the MSE method has been applied on Bonn dataset containing seizure and non-seizure EEG data and the corresponding results in terms of complexity have been obtained. Using statistical tests and support vector machine (SVM), the classification ability of the MSE method has been verified on Bonn dataset. Our results show that the MSE method is a viable approach to identifying epileptic seizure demonstrating a classification accuracy of 91.7%.
تدمد: 2524-1141
DOI: 10.30577/jba.2020.v3n1.39
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::92543039f3e6567cd8d95b7305f0ebe0
https://doi.org/10.30577/jba.2020.v3n1.39
Rights: OPEN
رقم الانضمام: edsair.doi...........92543039f3e6567cd8d95b7305f0ebe0
قاعدة البيانات: OpenAIRE
الوصف
تدمد:25241141
DOI:10.30577/jba.2020.v3n1.39