Newton–Okounkov bodies for Bott–Samelson varieties and string polytopes for generalized Demazure modules

التفاصيل البيبلوغرافية
العنوان: Newton–Okounkov bodies for Bott–Samelson varieties and string polytopes for generalized Demazure modules
المؤلفون: Naoki Fujita
المصدر: Journal of Algebra. 515:408-447
بيانات النشر: Elsevier BV, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Pure mathematics, Mathematics::Combinatorics, Algebra and Number Theory, Mathematics::Commutative Algebra, 010102 general mathematics, Toric variety, Homogeneous coordinate ring, Polytope, 01 natural sciences, Representation theory, String (physics), Mathematics::Quantum Algebra, 0103 physical sciences, Convex body, 010307 mathematical physics, 0101 mathematics, Mathematics::Representation Theory, Projective variety, Mathematics, Valuation (algebra)
الوصف: A Newton–Okounkov body is a convex body constructed from a projective variety with a valuation on its homogeneous coordinate ring; this generalizes a Newton polytope for a toric variety. This convex body inherits information about algebraic, geometric, and combinatorial properties of the original projective variety; for instance, Kaveh showed that string polytopes in the representation theory of algebraic groups are examples of Newton–Okounkov bodies for Schubert varieties. In this paper, we extend the notion of string polytopes for Demazure modules to generalized Demazure modules, and prove that the resulting generalized string polytopes are identical to the Newton–Okounkov bodies for Bott–Samelson varieties with respect to a specific valuation. As an application of this result, we show that these are indeed polytopes.
تدمد: 0021-8693
DOI: 10.1016/j.jalgebra.2018.08.019
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::8f35cea3e996f686818d1340e767d1b6
https://doi.org/10.1016/j.jalgebra.2018.08.019
Rights: OPEN
رقم الانضمام: edsair.doi...........8f35cea3e996f686818d1340e767d1b6
قاعدة البيانات: OpenAIRE
الوصف
تدمد:00218693
DOI:10.1016/j.jalgebra.2018.08.019