Approximants of quasiperiodic structures generated by the inflation mapping
العنوان: | Approximants of quasiperiodic structures generated by the inflation mapping |
---|---|
المؤلفون: | M Duneau |
المصدر: | Journal of Physics A: Mathematical and General. 22:4549-4564 |
بيانات النشر: | IOP Publishing, 1989. |
سنة النشر: | 1989 |
مصطلحات موضوعية: | Periodic lattice, Irrational number, Quasiperiodic function, Mathematical analysis, General Physics and Astronomy, Quasicrystal, Statistical and Nonlinear Physics, Invariant (mathematics), Mathematical Physics, SIMPLE algorithm, Mathematics |
الوصف: | The problem of deriving explicit coordinates for quasicrystal approximants is solved in all cases where the quasicrystal has an inflation symmetry. In the higher-dimensional space Rn, from which the quasiperiodic pattern is obtained by the cut method, the inflation symmetry is represented by a hyperbolic modular matrix (with integer entries) leaving the 'physical' space invariant. But this matrix also generates, by iteration, a sequence of (rational) approximant spaces which converges to the irrational space. A simple algorithm is described, providing the approximant periodic lattice and the set of vertices within a unit cell. |
تدمد: | 1361-6447 0305-4470 |
DOI: | 10.1088/0305-4470/22/21/017 |
URL الوصول: | https://explore.openaire.eu/search/publication?articleId=doi_________::8c29a976d8062452353f7c4c36f28958 https://doi.org/10.1088/0305-4470/22/21/017 |
رقم الانضمام: | edsair.doi...........8c29a976d8062452353f7c4c36f28958 |
قاعدة البيانات: | OpenAIRE |
تدمد: | 13616447 03054470 |
---|---|
DOI: | 10.1088/0305-4470/22/21/017 |