In this paper, an analytical study is reported on double-diffusive natural convection in a shallow porous cavity saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq approximations. A Cartesian coordinate system is chosen with the x- and y- axes at the geometrical center of the cavity and the y’-axis vertically upward. The top and bottom horizontal boundaries are subject to constant heat (q) and mass (j) fluxes. The porous medium is anisotropic in permeability whose principal axes are oriented in a direction that is oblique to the gravity vector. The permeabilities along the two principal axes of the porous matrix are denoted by K1 and K2. The anisotropy of the porous layer is characterized by the permeability ratio K*=K1/K2 and the orientation angle φ, defined as the angle between the horizontal direction and the principal axis with the permeability K2. The viscous dissipations are negligible. Based on parallel flow approximation theory, the problem is solved analytically, in the limit of a thin layer and documented the effects of the physical parameters describing this investigation. Solutions for the flow fields, Nusselt and Sherwood numbers are obtained explicitly in terms of the governing parameters of the problem.