An ensemble classification approach to motor-imagery brain state discrimination problem

التفاصيل البيبلوغرافية
العنوان: An ensemble classification approach to motor-imagery brain state discrimination problem
المؤلفون: Debarshi Kumar Sanyal, Dibyajyoti Guha, Ankita Datta, Rajdeep Chatterjee
المصدر: 2017 International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS).
بيانات النشر: IEEE, 2017.
سنة النشر: 2017
مصطلحات موضوعية: medicine.diagnostic_test, Computer science, business.industry, 020206 networking & telecommunications, Pattern recognition, 02 engineering and technology, Electroencephalography, Cross-validation, Wavelet, Motor imagery, Autoregressive model, 0202 electrical engineering, electronic engineering, information engineering, medicine, 020201 artificial intelligence & image processing, Artificial intelligence, business, Classifier (UML), Subspace topology
الوصف: This paper focuses on the use of ensemble classifiers on motor imagery data to distinguish brain states. Raw EEG signal is filtered and represented separately in terms of following features: Band power (BP), wavelet based energy-entropy (Engent) and feature extracted with adaptive autoregressive (AAR) model. We tested the classifiers using both hold-out testing (termed Experiment-I) and 10-fold cross-validation with stratified sampling (called Experiment II). We observe from our empirical study that the ensemble classifier particularly the subspace variant outperforms others in terms of classification accuracies in both experiment-I and II. Features extracted with AAR and energy-entropy techniques provide most consistence performance for experiment-I and II respectively.
DOI: 10.1109/ictus.2017.8286026
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::824590cc0d7e3fbdb10ef0a3947f9e21
https://doi.org/10.1109/ictus.2017.8286026
رقم الانضمام: edsair.doi...........824590cc0d7e3fbdb10ef0a3947f9e21
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1109/ictus.2017.8286026