Minimum values of the second largest Q-eigenvalue

التفاصيل البيبلوغرافية
العنوان: Minimum values of the second largest Q-eigenvalue
المؤلفون: Issmail El Hallaoui, Mustapha Aouchiche
المصدر: Discrete Applied Mathematics. 306:46-51
بيانات النشر: Elsevier BV, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Combinatorics, Matrix (mathematics), Applied Mathematics, Diagonal matrix, Spectrum (functional analysis), Discrete Mathematics and Combinatorics, Order (group theory), Adjacency matrix, Mathematics::Spectral Theory, Signless laplacian, Connectivity, Eigenvalues and eigenvectors, Mathematics
الوصف: For a graph G , the signless Laplacian matrix Q ( G ) is defined as Q ( G ) = D ( G ) + A ( G ) , where A ( G ) is the adjacency matrix of G and D ( G ) the diagonal matrix whose main entries are the degrees of the vertices in G . The Q -spectrum of G is that of Q ( G ) . In the present paper, we are interested in the minimum values of the second largest signless Laplacian eigenvalue q 2 ( G ) of a connected graph G . We find the five smallest values of q 2 ( G ) over the set of connected graphs G with given order n . We also characterize the corresponding extremal graphs.
تدمد: 0166-218X
DOI: 10.1016/j.dam.2021.09.019
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::822d648811841a5480910635c6ecdd2a
https://doi.org/10.1016/j.dam.2021.09.019
Rights: CLOSED
رقم الانضمام: edsair.doi...........822d648811841a5480910635c6ecdd2a
قاعدة البيانات: OpenAIRE
الوصف
تدمد:0166218X
DOI:10.1016/j.dam.2021.09.019