Data Infrastructure at LinkedIn

التفاصيل البيبلوغرافية
العنوان: Data Infrastructure at LinkedIn
المؤلفون: Thomas J. Quiggle, Bhaskar Ghosh, Brendan Harris, Aditya A. Auradkar, Joel Koshy, Cuong Tran, Bob Schulman, Shi Lu, Lei Gao, Lin Qiao, Dave De Maagd, Roshan Rajesh Sumbaly, Chavdar Botev, Kishore Gopalakrishna, Igor Perisic, Alex Feinberg, Kapil Surlaker, Zach White, David Zhang, Jason Zhang, Abraham Sebastian, Phanindra Ganti, Chinmay Soman, Sunil Nagaraj, Oliver Nicholas Seeliger, Neha Narkhede, Sasha Pachev, Jun Rao, BBoris Shkolnik, Kevin Krawez, Sajid Topiwala, Shirshanka Das, Balaji Varadarajan, Adam Silberstein, Jay Kreps, Jemiah Westerman
المصدر: ICDE
بيانات النشر: IEEE, 2012.
سنة النشر: 2012
مصطلحات موضوعية: Database, Distributed database, Computer science, Search engine indexing, computer.software_genre, Database index, Data set, World Wide Web, Schema (psychology), Server, Software fault tolerance, Scalability, Distributed data store, computer
الوصف: Linked In is among the largest social networking sites in the world. As the company has grown, our core data sets and request processing requirements have grown as well. In this paper, we describe a few selected data infrastructure projects at Linked In that have helped us accommodate this increasing scale. Most of those projects build on existing open source projects and are themselves available as open source. The projects covered in this paper include: (1) Voldemort: a scalable and fault tolerant key-value store, (2) Data bus: a framework for delivering database changes to downstream applications, (3) Espresso: a distributed data store that supports flexible schemas and secondary indexing, (4) Kafka: a scalable and efficient messaging system for collecting various user activity events and log data.
DOI: 10.1109/icde.2012.147
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::7e030e18dd049b91eb9e691b810aa451
https://doi.org/10.1109/icde.2012.147
رقم الانضمام: edsair.doi...........7e030e18dd049b91eb9e691b810aa451
قاعدة البيانات: OpenAIRE