Approaches to learning strictly-stable weights for data with missing values

التفاصيل البيبلوغرافية
العنوان: Approaches to learning strictly-stable weights for data with missing values
المؤلفون: Daniel Gómez, Gleb Beliakov, J. Tinguaro Rodríguez, Simon James, Javier Montero
المصدر: Fuzzy Sets and Systems. 325:97-113
بيانات النشر: Elsevier BV, 2017.
سنة النشر: 2017
مصطلحات موضوعية: 0209 industrial biotechnology, Linear programming, Logic, business.industry, Computer science, Context (language use), 02 engineering and technology, Machine learning, computer.software_genre, Missing data, Regression, 020901 industrial engineering & automation, Artificial Intelligence, 0202 electrical engineering, electronic engineering, information engineering, Optimization methods, 020201 artificial intelligence & image processing, Artificial intelligence, Dimension (data warehouse), business, computer
الوصف: The problem of missing data is common in real-world applications of supervised machine learning such as classification and regression. Such data often gives rise to the need for functions defined for varying dimension. Here we propose optimization methods for learning the weights of quasi-arithmetic means in the context of data with missing values. We investigate some alternative approaches depending on the number of variables that have missing values and show results for several numerical experiments.
تدمد: 0165-0114
DOI: 10.1016/j.fss.2017.02.003
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::6f83de62a9999ad365fcb6308e058068
https://doi.org/10.1016/j.fss.2017.02.003
Rights: CLOSED
رقم الانضمام: edsair.doi...........6f83de62a9999ad365fcb6308e058068
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01650114
DOI:10.1016/j.fss.2017.02.003