EEG Signal Classification by Global Field Power

التفاصيل البيبلوغرافية
العنوان: EEG Signal Classification by Global Field Power
المؤلفون: Xuebin Wang, Hai Yan Zhou, Qi Zhang, Jun Miao, Chun Peng Wu, Li Juan Duan, Zhen Yang
المصدر: Applied Mechanics and Materials. :1434-1437
بيانات النشر: Trans Tech Publications, Ltd., 2011.
سنة النشر: 2011
مصطلحات موضوعية: Facial expression, medicine.diagnostic_test, business.industry, Speech recognition, Noise reduction, Pattern recognition, General Medicine, Electroencephalography, Cross-validation, Signal classification, Principal component analysis, medicine, Global field power, Artificial intelligence, business, Classifier (UML), Mathematics
الوصف: Our project focuses on the emotional face evoked EEG signal recognition. Since EEG signals contain enough information to separate different emotional facial expressions. Thus we propose a new approach which is based on global field power on EEG signal classification. In order to perform this result, firstly, we gather a dataset with EEG signals. This is done by measuring EEG signals from people aged 20-30 that are stimulated by emotional facial expressions (Happy, Neutral, Sad). Secondly, the collected EEG signals are preprocessed through using noise reduction method. And then select features by principal component analysis (PCA) to filter out redundant information. Finally, using fisher classifier and a 10-fold cross validation method for training and testing, a good classification rate is achieved when combination local max global field power EEG signals. The rate is 90.49%.
تدمد: 1662-7482
DOI: 10.4028/www.scientific.net/amm.128-129.1434
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::6974e40b4d5b0d46ab55a68c52e2a768
https://doi.org/10.4028/www.scientific.net/amm.128-129.1434
Rights: CLOSED
رقم الانضمام: edsair.doi...........6974e40b4d5b0d46ab55a68c52e2a768
قاعدة البيانات: OpenAIRE
الوصف
تدمد:16627482
DOI:10.4028/www.scientific.net/amm.128-129.1434