Relative singularity categories and singular equivalences

التفاصيل البيبلوغرافية
العنوان: Relative singularity categories and singular equivalences
المؤلفون: Rasool Hafezi
المصدر: Journal of Homotopy and Related Structures. 16:487-516
بيانات النشر: Springer Science and Business Media LLC, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Noetherian, Subcategory, Path (topology), Noetherian ring, Algebra and Number Theory, Mathematics::Commutative Algebra, Homotopy category, Triangular matrix, Lift (mathematics), Combinatorics, Singularity, Mathematics::Category Theory, Geometry and Topology, Mathematics
الوصف: Let R be a right noetherian ring. We introduce the concept of relative singularity category $$\Delta _{\mathcal {X} }(R)$$ of R with respect to a contravariantly finite subcategory $$\mathcal {X} $$ of $${\text {{mod{-}}}}R.$$ Along with some finiteness conditions on $$\mathcal {X} $$ , we prove that $$\Delta _{\mathcal {X} }(R)$$ is triangle equivalent to a subcategory of the homotopy category $$\mathbb {K} _\mathrm{{ac}}(\mathcal {X} )$$ of exact complexes over $$\mathcal {X} $$ . As an application, a new description of the classical singularity category $$\mathbb {D} _\mathrm{{sg}}(R)$$ is given. The relative singularity categories are applied to lift a stable equivalence between two suitable subcategories of the module categories of two given right noetherian rings to get a singular equivalence between the rings. In different types of rings, including path rings, triangular matrix rings, trivial extension rings and tensor rings, we provide some consequences for their singularity categories.
تدمد: 1512-2891
2193-8407
DOI: 10.1007/s40062-021-00289-1
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::5fde193a0f62879cb25bba7280e9d5a8
https://doi.org/10.1007/s40062-021-00289-1
Rights: OPEN
رقم الانضمام: edsair.doi...........5fde193a0f62879cb25bba7280e9d5a8
قاعدة البيانات: OpenAIRE
الوصف
تدمد:15122891
21938407
DOI:10.1007/s40062-021-00289-1