Comparative Analysis of Feature Extraction Techniques in Motor Imagery EEG Signal Classification

التفاصيل البيبلوغرافية
العنوان: Comparative Analysis of Feature Extraction Techniques in Motor Imagery EEG Signal Classification
المؤلفون: Rajdeep Chatterjee, Tathagata Bandyopadhyay, Debarshi Kumar Sanyal, Dibyajyoti Guha
المصدر: Proceedings of First International Conference on Smart System, Innovations and Computing ISBN: 9789811058271
بيانات النشر: Springer Singapore, 2018.
سنة النشر: 2018
مصطلحات موضوعية: 0301 basic medicine, Signal processing, Computer science, business.industry, Feature extraction, Spectral density, Pattern recognition, Perceptron, Support vector machine, 03 medical and health sciences, Naive Bayes classifier, 030104 developmental biology, 0302 clinical medicine, Wavelet, Motor imagery, Artificial intelligence, business, 030217 neurology & neurosurgery
الوصف: Hand movement (both physical and imaginary) is linked to the motor cortex region of human brain. This paper aims to compare the left–right hand movement classification performance of different classifiers with respect to different feature extraction techniques. We have deployed four types of feature extraction techniques—wavelet-based energy–entropy, wavelet-based root mean square, power spectral density-based average power, and power spectral density-based band power. Elliptic bandpass filters are used to discard noise and to extract alpha and beta rhythm which corresponds to limb movement. The classifiers used are Bayesian logistic regression, naive Bayes, logistic, variants of support vector machine, and variants of multilayered perceptron. Classifier performance is evaluated using area under ROC curve, recall, precision, and accuracy.
ردمك: 978-981-10-5827-1
DOI: 10.1007/978-981-10-5828-8_8
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::4c7456402de3b321752acbdb225c5700
https://doi.org/10.1007/978-981-10-5828-8_8
Rights: CLOSED
رقم الانضمام: edsair.doi...........4c7456402de3b321752acbdb225c5700
قاعدة البيانات: OpenAIRE
الوصف
ردمك:9789811058271
DOI:10.1007/978-981-10-5828-8_8