On the effect of invisibility of stable periodic orbits at homoclinic bifurcations

التفاصيل البيبلوغرافية
العنوان: On the effect of invisibility of stable periodic orbits at homoclinic bifurcations
المؤلفون: I.I. Ovsyannikov, Dmitry Turaev, S. V. Gonchenko
المصدر: Physica D: Nonlinear Phenomena. 241:1115-1122
بيانات النشر: Elsevier BV, 2012.
سنة النشر: 2012
مصطلحات موضوعية: Surface (mathematics), Mathematics::Dynamical Systems, Mathematical analysis, Periodic point, Tangent, Statistical and Nonlinear Physics, Condensed Matter Physics, Stability (probability), Nonlinear Sciences::Chaotic Dynamics, Hénon map, Homoclinic bifurcation, Homoclinic orbit, Bifurcation, Mathematics
الوصف: a b s t r a c t We study bifurcations of a homoclinic tangency to a saddle-focus periodic point. We show that the stability domain for single-round periodic orbits which bifurcate near the homoclinic tangency has a characteristic''comb-like''structureanddependsstronglyonthesaddlevalue,i.e. onthearea-contracting properties of the map at the saddle-focus. In particular, when the map contracts two-dimensional areas, we have a cascade of periodic sinks in any one-parameter family transverse to the bifurcation surface that corresponds to the homoclinic tangency. However, when the area-contraction property is broken (while three-dimensional volumes are still contracted), the cascade of single-round sinks appears with ''probability zero'' only. Thus, if three-dimensional volumes are contracted, chaos associated with a homoclinictangencytoasaddle-focusisalwaysaccompaniedbystabilitywindows;howevertheviolation of the area-contraction property can make the stability windows invisible in one-parameter families.
تدمد: 0167-2789
DOI: 10.1016/j.physd.2012.03.002
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::4836643bc5849f67bf4e466b292634d7
https://doi.org/10.1016/j.physd.2012.03.002
Rights: CLOSED
رقم الانضمام: edsair.doi...........4836643bc5849f67bf4e466b292634d7
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01672789
DOI:10.1016/j.physd.2012.03.002