Infilling Sparse Records of Spatial Fields

التفاصيل البيبلوغرافية
العنوان: Infilling Sparse Records of Spatial Fields
المؤلفون: Timothy G. F. Kittel, Christopher Daly, Craig J Johns, Douglas Nychka
المصدر: Journal of the American Statistical Association. 98:796-806
بيانات النشر: Informa UK Limited, 2003.
سنة النشر: 2003
مصطلحات موضوعية: Statistics and Probability, Wishart distribution, Computer science, Stochastic process, Geostatistics, computer.software_genre, Regression, Cross-validation, Field (computer science), Specification, Point (geometry), Data mining, Statistics, Probability and Uncertainty, computer
الوصف: Historical records of weather, such as monthly precipitation and temperatures from the last century, are an invaluable database to use in studying changes and variability in climate. These data also provide the starting point for understanding and modeling the relationship among climate, ecological processes, and human activities. However, these data are observed irregularly over space and time. The basic statistical problem is to create a complete data record that is consistent with the observed data and is useful for other scientific disciplines. We modify the Gaussian-inverted Wishart spatial field model to accommodate irregular data patterns and to facilitate computations. Novel features of our implementation include the use of cross-validation to determine the relative prior weight given to the regression and geostatistical components and the use of a space-filling subset to reduce the computations for some parameters. We feel that the overall approach has merit, treading a line between computational...
تدمد: 1537-274X
0162-1459
DOI: 10.1198/016214503000000729
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::47d3997afc12b5c1909340aaedcd5ecb
https://doi.org/10.1198/016214503000000729
رقم الانضمام: edsair.doi...........47d3997afc12b5c1909340aaedcd5ecb
قاعدة البيانات: OpenAIRE
الوصف
تدمد:1537274X
01621459
DOI:10.1198/016214503000000729