Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks

التفاصيل البيبلوغرافية
العنوان: Benchmarking classification of earth-observation data: From learning explicit features to convolutional networks
المؤلفون: Anne Beaupere, Adrien Lagrange, Alexandre Boulch, Adrien Chan-Hon-Tong, Marin Ferecatu, Hicham Randrianarivo, Bertrand Le Saux, Stéphane Herbin
المصدر: IGARSS
بيانات النشر: IEEE, 2015.
سنة النشر: 2015
مصطلحات موضوعية: Earth observation, Artificial neural network, Computer science, business.industry, Deep learning, Feature extraction, Pattern recognition, Machine learning, computer.software_genre, Support vector machine, Benchmark (computing), Artificial intelligence, business, Transfer of learning, computer
الوصف: In this paper, we address the task of semantic labeling of multisource earth-observation (EO) data. Precisely, we benchmark several concurrent methods of the last 15 years, from expert classifiers, spectral support-vector classification and high-level features to deep neural networks. We establish that (1) combining multisensor features is essential for retrieving some specific classes, (2) in the image domain, deep convolutional networks obtain significantly better overall performances and (3) transfer of learning from large generic-purpose image sets is highly effective to build EO data classifiers.
DOI: 10.1109/igarss.2015.7326745
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::37d7790a3e112165b0bc68fccaa12ab3
https://doi.org/10.1109/igarss.2015.7326745
رقم الانضمام: edsair.doi...........37d7790a3e112165b0bc68fccaa12ab3
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1109/igarss.2015.7326745