An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification

التفاصيل البيبلوغرافية
العنوان: An Evaluation of Symbolic Feature Sets and Their Combination for Music Genre Classification
المؤلفون: Hanna C. B. Piccoli, Pedro J. Ponce de León, Carlos N. Silla, Antonio Pertusa
المصدر: SMC
بيانات النشر: IEEE, 2013.
سنة النشر: 2013
مصطلحات موضوعية: Ranking, business.industry, Computer science, Feature (machine learning), Music information retrieval, Pattern recognition, Artificial intelligence, State (computer science), business, Field (computer science), Task (project management)
الوصف: The automatic music genre classification task is an active area of research in the field of Music Information Retrieval. In this paper we use two different symbolic feature sets for genre classification and combine them using an early fusion approach. Our results show that early fusion achieves better classification accuracy than using any of the individual feature sets. Furthermore, when compared with some of the state of the art approaches using the same experimental conditions, early fusion of symbolic features is ranked the second best method.
DOI: 10.1109/smc.2013.327
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::2a9bc8f5972c96c11ae50a62b2915abe
https://doi.org/10.1109/smc.2013.327
Rights: OPEN
رقم الانضمام: edsair.doi...........2a9bc8f5972c96c11ae50a62b2915abe
قاعدة البيانات: OpenAIRE