Unsupervised anomaly detection with minimal sensing

التفاصيل البيبلوغرافية
العنوان: Unsupervised anomaly detection with minimal sensing
المؤلفون: Benjamin T. Fine
المصدر: ACM Southeast Regional Conference
بيانات النشر: ACM, 2009.
سنة النشر: 2009
مصطلحات موضوعية: business.industry, Computer science, Behavioral pattern, Minimum spanning tree, Machine learning, computer.software_genre, Field (computer science), Synthetic data, Unsupervised learning, Anomaly detection, Artificial intelligence, Data mining, Cluster analysis, business, computer, Wireless sensor network
الوصف: With the growing age of the baby-boomer generation and the rising cost of healthcare, it is becoming exceedingly difficult to give proper care and daily supervision to the elderly. The ability to detect anomalies in a subject's behavioral patterns based on minimal sensor data, will allow for a low cost sensor network to be placed into the subject's environment to provide this supervision. In this paper, we will discuss our approach for anomaly detection using a clustering algorithm on a minimal spanning tree and why this approach is more robust than statistical analysis. We will discuss the possible applications for such a system and will show that our method has a high success rate on both field and synthetic data.
DOI: 10.1145/1566445.1566525
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::2897eaa585b31d7876f5337aa2f9870f
https://doi.org/10.1145/1566445.1566525
رقم الانضمام: edsair.doi...........2897eaa585b31d7876f5337aa2f9870f
قاعدة البيانات: OpenAIRE