Classification of hyperspectral remote-sensing images using discriminative linear projections

التفاصيل البيبلوغرافية
العنوان: Classification of hyperspectral remote-sensing images using discriminative linear projections
المؤلفون: Lior Weizman, Jacob Goldberger
المصدر: International Journal of Remote Sensing. 30:5605-5617
بيانات النشر: Informa UK Limited, 2009.
سنة النشر: 2009
مصطلحات موضوعية: Computer science, business.industry, Hyperspectral imaging, Linear subspace, Projection (linear algebra), Spectroradiometer, Component analysis, Discriminative model, General Earth and Planetary Sciences, Computer vision, Penalty method, Artificial intelligence, business, Classifier (UML), Remote sensing
الوصف: In this study we apply a variant of a recently proposed linear subspace method, the Neighbourhood Component Analysis (NCA), to the task of hyperspectral classification. The NCA algorithm explicitly utilizes the classification performance criterion to obtain the optimal linear projection. NCA assumes nothing about the form of each class and the shape of the separating surfaces. In some cases we would like to weight the penalty function for different types of misclassifications of the algorithm. A modification of the NCA cost function is introduced for this case. Experimental studies are conducted on hyperspectral images acquired by two sensors: the Airborne Visible/Infrared Imaging Spectroradiometer (AVIRIS) and AISA-EAGLE. Experimental results confirm the superiority of the NCA classifier in the context of hyperspectral data classification over methodologies that were previously suggested.
تدمد: 1366-5901
0143-1161
DOI: 10.1080/01431160802695691
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::1c2401a350086fcdc57eea69e5e3e251
https://doi.org/10.1080/01431160802695691
رقم الانضمام: edsair.doi...........1c2401a350086fcdc57eea69e5e3e251
قاعدة البيانات: OpenAIRE
الوصف
تدمد:13665901
01431161
DOI:10.1080/01431160802695691