Modified UNet++ Model: A Deep Model for Automatic Segmentation of Lungs from Chest X-ray Images

التفاصيل البيبلوغرافية
العنوان: Modified UNet++ Model: A Deep Model for Automatic Segmentation of Lungs from Chest X-ray Images
المؤلفون: Indu Saini, Ruchika Arora, Neetu Sood
المصدر: 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC).
بيانات النشر: IEEE, 2021.
سنة النشر: 2021
مصطلحات موضوعية: Similarity (geometry), Lung segmentation, Computer science, business.industry, Medical imaging, X ray image, Automatic segmentation, Biomedical image, Pattern recognition, Segmentation, Image segmentation, Artificial intelligence, business
الوصف: In medical imaging, automatic lung segmentation from Chest X-ray (CXR) images helps doctors to diagnose various diseases and guide for further treatment. U-Net is the most popular model for biomedical image segmentation. But it does not consider regions outside the target, thus its performance decreases for complex images. An advanced U-Net++ model provides better performance on complex images than U-Net. In this paper, we propose a modified UNet++ framework for the segmentation of lungs in CXR images. This model is a deep supervised encoder-decoder architecture with dense skip connections. The proposed model used an easily accessible NLM-China CXR dataset and achieved promising performance for the segmentation of the lung fields. The experimental results showed that the modified UNet++ model achieved a Dice Similarity Coefficient (DSC) score of 0.9680 for lung segmentation that identifies tuberculosis disease.
DOI: 10.1109/icsccc51823.2021.9478101
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::0d8fd4080f3d092fd7dcfd5e56d75fd6
https://doi.org/10.1109/icsccc51823.2021.9478101
Rights: CLOSED
رقم الانضمام: edsair.doi...........0d8fd4080f3d092fd7dcfd5e56d75fd6
قاعدة البيانات: OpenAIRE
الوصف
DOI:10.1109/icsccc51823.2021.9478101