Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions

التفاصيل البيبلوغرافية
العنوان: Energy-conserving finite difference schemes for nonlinear wave equations with dynamic boundary conditions
المؤلفون: Shuji Yoshikawa, Akihiro Umeda, Yuta Wakasugi
المصدر: Applied Numerical Mathematics. 171:1-22
بيانات النشر: Elsevier BV, 2022.
سنة النشر: 2022
مصطلحات موضوعية: Computational Mathematics, Numerical Analysis, Applied Mathematics, Numerical analysis, Finite difference, Applied mathematics, Functional derivative, Uniqueness, Boundary value problem, Focus (optics), Wave equation, Energy (signal processing), Mathematics
الوصف: In this article, we discuss the numerical analysis for the finite difference scheme of the one-dimensional nonlinear wave equations with dynamic boundary conditions. From the viewpoint of the discrete variational derivative method we propose the derivation of the energy-conserving finite difference schemes of the problem, which covers a variety of equations as widely as possible. Next, we focus our attention on the semilinear wave equation, and show the existence and uniqueness of the solution for the scheme and error estimates with the help of the inherited energy structure.
تدمد: 0168-9274
DOI: 10.1016/j.apnum.2021.08.009
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::0d2c2fff3445924f800f8489a8485447
https://doi.org/10.1016/j.apnum.2021.08.009
Rights: OPEN
رقم الانضمام: edsair.doi...........0d2c2fff3445924f800f8489a8485447
قاعدة البيانات: OpenAIRE
الوصف
تدمد:01689274
DOI:10.1016/j.apnum.2021.08.009