Geospatial uncertainty modeling using Stacked Gaussian Processes

التفاصيل البيبلوغرافية
العنوان: Geospatial uncertainty modeling using Stacked Gaussian Processes
المؤلفون: Junshu Bao, Kareem Abdelfatah, Gabriel Terejanu
المصدر: Environmental Modelling & Software. 109:293-305
بيانات النشر: Elsevier BV, 2018.
سنة النشر: 2018
مصطلحات موضوعية: Polynomial, Environmental Engineering, Forcing (recursion theory), 010504 meteorology & atmospheric sciences, Dynamical systems theory, Ecological Modeling, Nonparametric statistics, 01 natural sciences, Exponential function, 010104 statistics & probability, Noise, symbols.namesake, symbols, Applied mathematics, 0101 mathematics, Gaussian process, Software, 0105 earth and related environmental sciences, Parametric statistics
الوصف: A network of independently trained Gaussian processes (StackedGP) is introduced to obtain predictions of geospatial quantities of interest (model outputs) with quantified uncertainties. The uncertain nature of model outputs is due to model inadequacy, parametric uncertainty, and measurement noise. StackedGP framework supports component-based modeling in environmental science, enhances predictions of quantities of interest through a cascade of intermediate predictions usually addressed by cokriging, and propagates uncertainties through emulated dynamical systems driven by uncertain forcing variables. By using analytical first and second-order moments of a Gaussian process with uncertain inputs using squared exponential and polynomial kernels, approximated expectations of model outputs that require an arbitrary composition of functions can be obtained. The performance of the proposed nonparametric stacked model in model composition and cascading predictions is measured in a wildfire and mineral resource problem using real data, and its application to time-series prediction is demonstrated in a 2D puff advection problem.
تدمد: 1364-8152
DOI: 10.1016/j.envsoft.2018.08.022
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::0cb5944d9138a345854026473a6c5c27
https://doi.org/10.1016/j.envsoft.2018.08.022
Rights: CLOSED
رقم الانضمام: edsair.doi...........0cb5944d9138a345854026473a6c5c27
قاعدة البيانات: OpenAIRE
الوصف
تدمد:13648152
DOI:10.1016/j.envsoft.2018.08.022