Following a Moving Target—Monte Carlo Inference for Dynamic Bayesian Models

التفاصيل البيبلوغرافية
العنوان: Following a Moving Target—Monte Carlo Inference for Dynamic Bayesian Models
المؤلفون: Carlo Berzuini, Walter R. Gilks
المصدر: Journal of the Royal Statistical Society Series B: Statistical Methodology. 63:127-146
بيانات النشر: Oxford University Press (OUP), 2001.
سنة النشر: 2001
مصطلحات موضوعية: Statistics and Probability, Markov chain, Monte Carlo method, Sampling (statistics), Markov chain Monte Carlo, Bayesian inference, Statistics::Computation, symbols.namesake, ComputingMethodologies_PATTERNRECOGNITION, Resampling, Statistics, symbols, Statistics, Probability and Uncertainty, Particle filter, Algorithm, Importance sampling, Mathematics
الوصف: Summary Markov chain Monte Carlo (MCMC) sampling is a numerically intensive simulation technique which has greatly improved the practicality of Bayesian inference and prediction. However, MCMC sampling is too slow to be of practical use in problems involving a large number of posterior (target) distributions, as in dynamic modelling and predictive model selection. Alternative simulation techniques for tracking moving target distributions, known as particle filters, which combine importance sampling, importance resampling and MCMC sampling, tend to suffer from a progressive degeneration as the target sequence evolves. We propose a new technique, based on these same simulation methodologies, which does not suffer from this progressive degeneration.
تدمد: 1467-9868
1369-7412
DOI: 10.1111/1467-9868.00280
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_________::0b3451944519ecd8b5b3f28379c35b32
https://doi.org/10.1111/1467-9868.00280
Rights: OPEN
رقم الانضمام: edsair.doi...........0b3451944519ecd8b5b3f28379c35b32
قاعدة البيانات: OpenAIRE
الوصف
تدمد:14679868
13697412
DOI:10.1111/1467-9868.00280